Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Mem. Inst. Oswaldo Cruz ; 116: e200417, 2021. tab, graf
Article in English | LILACS | ID: biblio-1154880

ABSTRACT

BACKGROUND Toxoplasma gondii causes toxoplasmosis and is controlled by activated macrophages. However, infection of macrophages by tachyzoites induces TGF-β signaling (TGF-s) inhibiting nitric oxide (NO) production. NO inhibition may be a general escape mechanism of distinct T. gondii strains. OBJECTIVES To evaluate in activated macrophages the capacity of T. gondii strains of different virulence and genetics (RH, type I; ME-49, type II; VEG, type III; P-Br, recombinant) to evade the NO microbicidal defense system and determine LC3 loading to the parasitophorous vacuole. METHODS Activated peritoneal macrophages were infected with the different T. gondii strains, NO-production was evaluated by the Griess reagent, and inducible nitric oxide synthase expression, TGF-s, and LC3 localisation assayed by immunofluorescence. FINDINGS Only RH persisted in macrophages, while VEG was more resistant than P-Br and ME-49. All strains induced TGF-s, degradation of inducible nitric oxide synthase, and NO-production inhibition from 2 to 24 h of infection, but only RH sustained these alterations for 48 h. By 24 h of infection, TGF-s lowered in macrophages infected by ME-49, and P-Br, and NO-production recovered, while VEG sustained TGF-s and NO-production inhibition longer. LC3 loading to parasitophorous vacuole was strain-dependent: higher for ME-49, P-Br and VEG, lower for RH. All strains inhibited NO-production, but only RH sustained this effect probably because it persisted in macrophages due to additional evasive mechanisms as lower LC3 loading to parasitophorous vacuole. MAIN CONCLUSIONS These results support that T. gondii can escape the NO microbicidal defense system at the initial phase of the infection, but only the virulent strain sustain this evasion mechanism.


Subject(s)
Animals , Mice , Toxoplasma/physiology , Macrophages, Peritoneal/parasitology , Nitric Oxide Synthase/metabolism , Macrophages/parasitology , Nitric Oxide/biosynthesis , Toxoplasmosis, Animal/parasitology , Macrophages/metabolism
2.
Rev. Soc. Bras. Med. Trop ; 49(2): 196-203, Mar.-Apr. 2016. tab, graf
Article in English | LILACS | ID: lil-782098

ABSTRACT

Abstract: INTRODUCTION: Leishmaniasis is a disease caused by the protozoan Leishmania that resides mainly in mononuclear phagocytic system tissues. Pentavalent antimonials are the main treatment option, although these drugs have toxic side effects and high resistance rates. A potentially alternative and more effective therapeutic strategy is to use liposomes as carriers of the antileishmanial agents. The aims of this study were to develop antimonial drugs entrapped into phosphatidylserine liposomes and to analyze their biological and physicochemical characteristics. METHODS: Liposomes containing meglumine antimoniate (MA) or pentavalent antimony salt (Sb) were obtained through filter extrusion (FEL) and characterized by transmission electron microscopy. Promastigotes of Leishmania infantum were incubated with the drugs and the viability was determined with a tetrazolium dye (MTT assay). The effects of these drugs against intracellular amastigotes were also evaluated by optical microscopy, and mammalian cytotoxicity was determined by an MTT assay. RESULTS: Liposomes had an average diameter of 162nm. MA-FEL showed inhibitory activity against intracellular L. infantum amastigotes, with a 50% inhibitory concentration (IC50) of 0.9μg/mL, whereas that of MA was 60μg/mL. Sb-FEL showed an IC50 value of 0.2μg/mL, whereas that of free Sb was 9μg/mL. MA-FEL and Sb-FEL had strong in vitro activity that was 63-fold and 39-fold more effective than their respective free drugs. MA-FEL tested at a ten-times higher concentration than Sb-FEL did not show cytotoxicity to mammalian cells, resulting in a higher selectivity index. CONCLUSIONS: Antimonial drug-containing liposomes are more effective against Leishmania-infected macrophages than the non-liposomal drugs.


Subject(s)
Animals , Organometallic Compounds/pharmacology , Phosphatidylserines/pharmacology , Macrophages, Peritoneal/parasitology , Leishmania infantum/drug effects , Antimony Sodium Gluconate/pharmacology , Meglumine/pharmacology , Antiprotozoal Agents/pharmacology , Organometallic Compounds/chemistry , Phosphatidylserines/chemistry , Cricetinae , Antimony Sodium Gluconate/chemistry , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug , Meglumine Antimoniate , Liposomes , Meglumine/chemistry , Mice , Mice, Inbred BALB C , Antiprotozoal Agents/chemistry
3.
Rev. Soc. Bras. Med. Trop ; 49(1): 68-73, Jan.-Feb. 2016. graf
Article in English | LILACS | ID: lil-776538

ABSTRACT

Abstract: INTRODUCTION: Leishmaniasis is a zoonotic disease caused by protozoa of the genus Leishmania . Cutaneous leishmaniasis is the most common form, with millions of new cases worldwide each year. Treatments are ineffective due to the toxicity of existing drugs and the resistance acquired by certain strains of the parasite. METHODS: We evaluated the activity of sodium nitroprusside in macrophages infected with Leishmania (Leishmania) amazonensis . Phagocytic and microbicidal activity were evaluated by phagocytosis assay and promastigote recovery, respectively, while cytokine production and nitrite levels were determined by ELISA and by the Griess method. Levels of iNOS and 3-nitrotyrosine were measured by immunocytochemistry. RESULTS: Sodium nitroprusside exhibited in vitro antileishmanial activity at both concentrations tested, reducing the number of amastigotes and recovered promastigotes in macrophages infected with L. amazonensis . At 1.5µg/mL, sodium nitroprusside stimulated levels of TNF-α and nitric oxide, but not IFN-γ. The compound also increased levels of 3-nitrotyrosine, but not expression of iNOS, suggesting that the drug acts as an exogenous source of nitric oxide. CONCLUSIONS: Sodium nitroprusside enhances microbicidal activity in Leishmania -infected macrophages by boosting nitric oxide and 3-nitrotyrosine.


Subject(s)
Animals , Tyrosine/analogs & derivatives , Trypanocidal Agents/pharmacology , Nitroprusside/pharmacology , Macrophages, Peritoneal/parasitology , Nitric Oxide/biosynthesis , Tyrosine/biosynthesis , Tyrosine/drug effects , Immunohistochemistry , Mice , Mice, Inbred BALB C
4.
Mem. Inst. Oswaldo Cruz ; 110(8): 1024-1034, Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769826

ABSTRACT

The herbaceous shrub Tetradenia riparia has been traditionally used to treat inflammatory and infectious diseases. Recently, a study showed that T. riparia essential oil (TrEO) obtained in summer has antileishmanial effects, although these results could be influenced by seasonal variation. This study evaluated the activity of the TrEO obtained in different seasons against Leishmania (Leishmania) amazonensis, in vitro and in vivo. The compounds in the TrEO were analysed by gas chromatography-mass spectrometry; terpenoids were present and oxygenated sesquiterpenes were the majority compounds (55.28%). The cytotoxicity and nitric oxide (NO) production were also tested after TrEO treatment. The TrEO from all seasons showed a 50% growth inhibitory concentration for promastigotes of about 15 ng/mL; at 30 ng/mL and 3 ng/mL, the TrEO reduced intracellular amastigote infection, independently of season. The TrEO from plants harvested in summer had the highest 50% cytotoxic concentration, 1,476 ng/mL for J774.A1 macrophages, and in spring (90.94 ng/mL) for murine macrophages. NO production did not change in samples of the TrEO from different seasons. The antileishmanial effect in vivo consisted of a reduction of the parasite load in the spleen. These results suggest that the TrEO has potential effects on L. (L.) amazonensis, consonant with its traditional use to treat parasitic diseases.


Subject(s)
Animals , Female , Antiprotozoal Agents/pharmacology , Lamiaceae/chemistry , Leishmania/drug effects , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Antiprotozoal Agents/isolation & purification , Cytotoxins/pharmacology , Gas Chromatography-Mass Spectrometry , Growth Inhibitors/pharmacology , In Vitro Techniques , Leishmania/classification , Lymph Nodes/parasitology , Mice, Inbred BALB C , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Nitric Oxide/analysis , Oils, Volatile/chemistry , Parasite Load , Plant Extracts/chemistry , Plant Leaves/chemistry , Seasons , Sesquiterpenes/analysis , Spleen/parasitology , Time Factors
5.
Mem. Inst. Oswaldo Cruz ; 109(6): 767-774, 09/09/2014. tab, graf
Article in English | LILACS | ID: lil-724002

ABSTRACT

Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.


Subject(s)
Animals , Cattle , Male , Mice , Lipid Droplets/parasitology , Macrophage Activation/physiology , Macrophages, Peritoneal/parasitology , Toxoplasma/physiology , Vacuoles/parasitology , Host-Parasite Interactions , Indomethacin/pharmacology , Lipid Droplets/physiology , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Macrophages, Peritoneal/chemistry , Macrophages, Peritoneal/physiology , Macrophages, Peritoneal/ultrastructure , Nitric Oxide/biosynthesis , Primary Cell Culture , Prostaglandins E/antagonists & inhibitors , Prostaglandins E/biosynthesis , Vacuoles/physiology
6.
Mem. Inst. Oswaldo Cruz ; 109(4): 459-465, 03/07/2014. graf
Article in English | LILACS | ID: lil-716311

ABSTRACT

Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection.


Subject(s)
Animals , Chagas Disease/immunology , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/parasitology , Neuroglia/parasitology , Nitric Oxide/biosynthesis , Trypanosoma cruzi/immunology , Chagas Disease/etiology , Fluorescent Antibody Technique , Mice, Inbred BALB C , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Neuroglia/drug effects , Neuroglia/immunology
7.
Mem. Inst. Oswaldo Cruz ; 108(2): 172-177, abr. 2013. tab, graf
Article in English | LILACS | ID: lil-670406

ABSTRACT

Peromyscus yucatanicus (Rodentia: Cricetidae) is a primary reservoir of Leishmania (Leishmania) mexicana (Kinetoplastida: Trypanosomatidae). Nitric oxide (NO) generally plays a crucial role in the containment and elimination of Leishmania. The aim of this study was to determine the amount of NO produced by P. yucatanicus infected with L. (L.) mexicana. Subclinical and clinical infections were established in P. yucatanicus through inoculation with 1 x 10 2 and 2.5 x 10 6 promastigotes, respectively. Peritoneal macrophages were cultured alone or co-cultured with lymphocytes with or without soluble Leishmania antigen. The level of NO production was determined using the Griess reaction. The amount of NO produced was significantly higher (p ≤ 0.0001) in co-cultured macrophages and lymphocytes than in macrophages cultured alone. No differences in NO production were found between P. yucatanicus with subclinical L. (L.) mexicana infections and animals with clinical infections. These results support the hypothesis that the immunological mechanisms of NO production in P. yucatanicus are similar to those described in mouse models of leishmaniasis and, despite NO production, P. yucatanicus is unable to clear the parasite infection.


Subject(s)
Animals , Leishmania mexicana/immunology , Leishmaniasis, Cutaneous/immunology , Macrophages, Peritoneal/parasitology , Nitric Oxide/biosynthesis , Peromyscus/metabolism , Disease Models, Animal , Macrophages, Peritoneal/immunology , Peromyscus/parasitology
8.
Rev. Inst. Med. Trop. Säo Paulo ; 54(2): 95-102, Mar.-Apr. 2012. ilus, graf
Article in English | LILACS | ID: lil-625262

ABSTRACT

This study examined the susceptibility of peritoneal macrophage (PM) from the Neotropical primates: Callithrix jacchus, Callithrix penicillata, Saimiri sciureus, Aotus azarae infulatus and Callimico goeldii to ex vivo Leishmania (L.) infantum chagasi-infection, the etiological agent of American visceral leishmaniasis (AVL), as a screening assay for evaluating the potential of these non-human primates as experimental models for studying AVL. The PM-susceptibility to infection was accessed by the PM-infection index (PMI) at 24, 72 h and by the mean of these rates (FPMI), as well as by the TNF-α, IL-12 (Capture ELISA) and Nitric oxide (NO) responses (Griess method). At 24h, the PMI of A. azarae infulatus (128) was higher than those of C. penicillata (83), C. goeldii (78), S. sciureus (77) and C. jacchus (55). At 72h, there was a significant PMI decrease in four monkeys: A. azarae infulatus (128/37), C. penicillata (83/38), S. sciureus (77/38) and C. jacchus (55/12), with exception of C. goeldii (78/54). The FPMI of A. azarae infulatus (82.5) and C. goeldii (66) were higher than C. jacchus (33.5), but not higher than those of C. penicillata (60.5) and S. sciureus (57.5). The TNF-a response was more regular in those four primates which decreased their PMI at 24/72 h: C. jacchus (145/122 pg/mL), C. penicillata (154/130 pg/mL), S. sciureus (164/104 pg/mL) and A. azarae infulatus (154/104 pg/mL), with exception of C. goeldii (38/83 pg/mL). The IL-12 response was mainly prominent in A. infulatus and C. goeldii which presented the highest FPMI and, the NO response was higher in C. goeldii, mainly at 72 h. These findings strongly suggest that these New World primates have developed a resistant innate immune response mechanism capable of controlling the macrophage intracellular growth of L. (L.) i. chagasi-infection, which do not encourage their use as animal model for studying AVL.


Este estudo examinou a susceptibilidade do macrófago peritoneal (PM) dos primatas neotropicais: Callithrix jacchus, Callithrix penicillata, Saimiri sciureus, Aotus azarae infulatus e Callimico goeldii para a infecção ex vivo por Leishmania (L.) infantum chagasi, o agente etiológico da leishmaniose visceral americana (LVA), como método de triagem para avaliar o potencial desses primatas como modelo de estudo da LVA. A susceptibilidade do PM para a infecção foi investigada através do índice de infecção do PM (PMI) a intervalos de 24, 72 horas e, ainda, pela média dessas taxas (FPMI), assim como, pelas respostas do TNF-α, IL-2 (ELISA de captura) e óxido nítrico (NO) (método de Griess). Às 24hs da infecção experimental, o PMI do primata A. azarae infulatus (128) foi maior que aqueles de C. penicillata (83), C. goeldii (78), S. sciureus (77) e C. jacchus (55). Às 72hs, houve uma redução significativa do PMI de quatro primatas: A. azarae infulatus (128/37), C. penicillata (83/38), S. sciureus (77/38) e C. jacchus (55/12), com exceção de C. goeldii (78/54). O FPMI dos primatas A. azarae infulatus (82.5) e C. goeldii (66) foi maior que do primata C. jacchus (33.5), porém, não foi maior que dos primatas C. penicillata (60.5) e S. sciureus (57.5). A resposta do TNF-α foi mais regular nos quatro primatas que reduziram o PMI no intervalo de 24-72hs: C. jacchus (145/122 pg/µL), C. penicillata (154/130 pg/µL), S. sciureus (164/104 pg/µL) e A. azarae infulatus (154/104 pg/µL), com exceção de C. goeldii (38/83 pg/µL). A resposta de IL-12 foi, principalmente, marcante nos primatas A. azarae infulatus e C. goeldii, os quais apresentaram as maiores taxas do FPMI, e a resposta do NO foi maior no primata C. goeldii, em especial no intervalo de 72hs. Estes achados sugerem, fortemente, que estes primatas neotropicais parecem ter desenvolvido mecanismos resistentes de resposta imune inata capaz de controlar o crescimento intracelular da infecção por L. (L.) i. chagasi no macrófago, o que não encoraja o uso destes primatas como modelo de estudo da LVA.


Subject(s)
Animals , Dogs , /blood , Leishmania infantum/pathogenicity , Leishmaniasis, Visceral/veterinary , Macrophages, Peritoneal/parasitology , Tumor Necrosis Factor-alpha/blood , Disease Models, Animal , Disease Susceptibility , Enzyme-Linked Immunosorbent Assay , /immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Primates/parasitology , Species Specificity , Time Factors , Tumor Necrosis Factor-alpha/immunology
9.
Mem. Inst. Oswaldo Cruz ; 107(2): 238-245, Mar. 2012. ilus, graf
Article in English | LILACS | ID: lil-617071

ABSTRACT

In Leishmania amazonensis, kinetoplastid membrane protein-11 (KMP-11) expression increases during metacyclogenesis and is higher in amastigotes than in promastigotes, suggesting a role for this protein in the infection of the mammalian host. We show that the addition of KMP-11 exacerbates L. amazonensis infection in peritoneal macrophages from BALB/c mice by increasing interleukin (IL)-10 secretion and arginase activity while reducing nitric oxide (NO) production. The doses of KMP-11, the IL-10 levels and the intracellular amastigote loads were strongly, positively and significantly correlated. The increase in parasite load induced by KMP-11 was inhibited by anti-KMP-11 or anti-IL-10 neutralising antibodies, but not by isotype controls. The neutralising antibodies, but not the isotype controls, were also able to significantly decrease the parasite load in macrophages cultured without the addition of KMP-11, demonstrating that KMP-11-induced exacerbation of the infection is not dependent on the addition of exogenous KMP-11 and that the protein naturally expressed by the parasite is able to promote it. In this study, the exacerbating effect of KMP-11 on macrophage infection with Leishmania is for the first time demonstrated, implicating it as a virulence factor in L. amazonensis. The stimulation of IL-10 production and arginase activity and the inhibition of NO synthesis are likely involved in this effect.


Subject(s)
Animals , Female , Mice , Arginase/metabolism , /immunology , Leishmania mexicana/drug effects , Macrophages, Peritoneal/parasitology , Membrane Proteins/pharmacology , Nitric Oxide/biosynthesis , Protozoan Proteins/pharmacology , Cells, Cultured , Leishmania mexicana/immunology , Mice, Inbred BALB C , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/immunology
10.
Rev. Inst. Med. Trop. Säo Paulo ; 53(5): 247-253, Sept.-Oct. 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-602359

ABSTRACT

Twelve strains of Trypanosoma cruzi isolated from wild reservoirs, triatomines, and chronic chagasic patients in the state of Paraná, southern Brazil, and classified as T. cruzi I and II, were used to test the correlation between genetic and biological diversity. The Phagocytic Index (PI) and nitric-oxide (NO) production in vitro were used as biological parameters. The PI of the T. cruzi I and II strains did not differ significantly, nor did the PI of the T. cruzi strains isolated from humans, triatomines, or wild reservoirs. There was a statistical difference in the inhibition of NO production between T. cruzi I and II and between parasites isolated from humans and the strains isolated from triatomines and wild reservoirs, but there was no correlation between genetics and biology when the strains were analyzed independently of the lineages or hosts from which the strains were isolated. There were significant correlations for Randomly Amplified Polymorphic Deoxyribonucleic acid (RAPD) and biological parameters for T. cruzi I and II, and for humans or wild reservoirs when the lineages or hosts were considered individually.


Doze cepas de Trypanosoma cruzi isoladas de reservatórios silvestres, triatomíneos e de pacientes chagásicos crônicos do Estado do Paraná, Brasil, classificadas como Tc I e II foram usadas para avaliar a correlação entre genética e diversidade biológica. Índice fagocítico (IF) e produção de óxido nítrico (ON) in vitro foram os parâmetros biológicos utilizados. O IF de cepas T. cruzi I e II não diferiram significativamente assim como o IF de cepas isoladas de humanos, triatomíneos ou de reservatórios silvestres. Há diferença estatística na inibição da produção de ON entre T. cruzi I e II e entre parasitos isolados de humanos e de cepas isoladas de triatomíneos e reservatórios silvestres, mas não foi observada correlação entre genética e biologia quando as cepas foram analisadas independentemente da linhagem ou hospedeiros das quais elas foram isoladas. Observou-se correlação significativa para amplificação aleatória do DNA polimórfico e parâmetros biológicos de Tc I ou II e para os seres humanos ou reservatório silvestre quando linhagens ou hospedeiros são consideradas separadamente.


Subject(s)
Animals , Female , Humans , Mice , Genetic Variation/genetics , Macrophages, Peritoneal/parasitology , Nitric Oxide/biosynthesis , Phagocytosis/physiology , Trypanosoma cruzi/genetics , Disease Reservoirs/parasitology , Host-Parasite Interactions , Insect Vectors/parasitology , Mice, Inbred BALB C , Macrophages, Peritoneal/cytology , Triatominae/parasitology , Trypanosoma cruzi/classification , Trypanosoma cruzi/physiology
11.
Rev. Inst. Med. Trop. Säo Paulo ; 53(4): 235-238, July.-Aug. 2011. graf
Article in English | LILACS | ID: lil-598607

ABSTRACT

Surfacen® is an exogenous natural lung surfactant, composed by phospholipids and hydrophobic proteins, which is applied successfully in Newborn Respiratory Distress Syndrome. In this paper, in vitro activity of Surfacen® against Leishmania amazonensis is described. The product showed activity against the amastigote form found in peritoneal macrophages from BALB/c mice, with an IC50 value of 17.9 ± 3.0 µg/mL; while no toxic effect on host cell was observed up to 200 µg/mL. This is the first report about the antileishmanial activity of Surfacen®.


Surfacen® es un surfactante natural exógeno extraído del pulmón, formado por fosfolípidos y proteínas hidrofóbicas, el cual es aplicado con éxito en el Síndrome de Distrés Respiratorio en Niños Recién Nacidos. En este trabajo, se describe la actividad in vitro del Surfacen® contra Leishmania amazonensis. El producto mostró actividad frente a amastigotes que se encuentran en macrófagos peritoneales de ratón BALB/c, con una CI50 de 17.9 ± 3.0 µg/mL, mientras no se observaron efectos tóxicos sobre la célula hospedera hasta 200 µg/mL. Este estudio constituye el primer reporte sobre la actividad antileishmania del Surfacen®.


Subject(s)
Animals , Mice , Antiprotozoal Agents/pharmacology , Leishmania mexicana/drug effects , Phospholipids/pharmacology , Pulmonary Surfactant-Associated Proteins/pharmacology , Mice, Inbred BALB C , Macrophages, Peritoneal/parasitology , Parasitic Sensitivity Tests , Pulmonary Surfactants/pharmacology
12.
The Korean Journal of Parasitology ; : 357-364, 2011.
Article in English | WPRIM | ID: wpr-78171

ABSTRACT

Various Leishmania species were engineered with green fluorescent protein (GFP) using episomal vectors that encoded an antibiotic resistance gene, such as aminoglycoside geneticin sulphate (G418). Most reports of GFP-Leishmania have used the flagellated extracellular promastigote, the stage of parasite detected in the midgut of the sandfly vector; fewer studies have been performed with amastigotes, the stage of parasite detected in mammals. In this study, comparisons were made regarding the efficiency for in vitro G418 selection of GFP-Leishmania amazonensis promastigotes and amastigotes and the use of in vivo G418 selection. The GFP-promastigotes retained episomal plasmid for a prolonged period and G418 treatment was necessary and efficient for in vitro selection. In contrast, GFP-amastigotes showed low retention of the episomal plasmid in the absence of G418 selection and low sensitivity to antibiotics in vitro. The use of protocols for G418 selection using infected BALB/c mice also indicated low sensitivity to antibiotics against amastigotes in cutaneous lesions.


Subject(s)
Animals , Mice , Amebicides/pharmacology , Flow Cytometry , Gentamicins/pharmacology , Green Fluorescent Proteins/chemistry , Host-Parasite Interactions , Leishmania mexicana/drug effects , Leishmaniasis, Cutaneous/parasitology , Luminescent Agents/chemistry , Macrophages, Peritoneal/parasitology , Mice, Inbred BALB C , Organisms, Genetically Modified , Spectrometry, Fluorescence
13.
Rev. biol. trop ; 57(1/2): 13-22, March-June 2009. graf
Article in Spanish | LILACS | ID: lil-637695

ABSTRACT

The immunosuppressant effect of T. lewisi (Kinetoplastidae) infection on the multiplication of Toxoplasma gondii (Sarcocystidae) on alveolar and peritoneal macrophages of the white rat. The immunosuppressant effect of T. lewisi infection on the multiplication of T. gondii was compared in peritoneal (MP) and alveolar macrophages (MA) of white rat. Two animal groups were infected with T. lewisi and sacrificed after four days and seven days post infection. A group without infection was maintained as a control. The number of intracellular parasites (tachyzoites) (IT) was counted by light microscopy, calculating the rate infection rate per 100 total cells (TC) and per infected cells (IC) for each group of phagocyte cells. The relation quotient IT, TC or IC multiplied percent, provided a statistical ratio (RE) of the relative number of parasites in both cellular types for each time interval. MA as well as MP obtained after 4 days showed a significant increase in the multiplication of T. gondii with respect to the control. Unlike the MP (which had an increase in the multiplication of T. gondii the fourth day of infection with T. lewisi diminishing towards the seventh day), the MA had an increase in the multiplication of the parasite from the fourth to the seventh day. This difference can be related to the route of infection used for the experiments, that affect the MP directly with a greater effect in comparison with the MA of the lungs. Lung compartment will be affected later, when the infection becomes systemic between the fourth and sixth day of infection. The immunity against T. gondii is similar between both phagocytes, but the time of infection and the compartment where the cells are located, makes the difference in the response time against T. gondii. Supernatants from macrophage cultures or T. lewisi by rat did not induced any immunosuppression. Rev. Biol. Trop. 57 (1-2): 13-22. Epub 2009 June 30.


El efecto inmunosupresor de la infección de T. lewisi sobre la multiplicación de T. gondii fue comparado en macrófagos peritoneales (MP) y alveolares (MA) de rata. El número de parásitos (taquizoitos) intracelulares (TI) fue contado por microscopía de luz. Los macrófagos alveolares y peritoneales (MP) de animales con 4 días de infección con T. lewisi muestran un aumento significativo en la multiplicación de T. gondii. A diferencia de los MP (que muestran un aumento en la multiplicación de T. gondii al cuarto día de infección con T. lewisi disminuyendo hacia el séptimo día), los MA mantienen un aumento en la multiplicación del parásito desde el cuarto, aumentando hacia el séptimo día de infección. Esta diferencia se puede deber a la ruta de infección utilizada para los experimentos que afectan directamente los MP donde se observa un efecto mayor y más temprano en comparación con los MA aislados de los pulmones, compartimiento afectado cuando la infección se vuelve sistémica entre el cuarto y sexto día de infección. La inmunidad contra T. gondii es similar entre ambas células fagocíticas, pero el tiempo de infección y el compartimiento donde se encuentren las células hace la diferencia en el tiempo de respuesta contra un parásito dado, en nuestro caso T. gondii. No hubo evidencia de que los sobrenadantes de cultivos de macrófagos provenientes de ratas infectadas ni el lisado de tripanosomas indujeran el efecto inmunosupresor.


Subject(s)
Animals , Male , Mice , Rats , Macrophages, Alveolar/parasitology , Macrophages, Peritoneal/parasitology , Toxoplasma/growth & development , Trypanosoma lewisi/immunology , Host-Parasite Interactions/immunology , Immune Tolerance/immunology , Macrophages, Alveolar/immunology , Macrophages, Peritoneal/immunology , Toxoplasma/immunology
14.
Salvador; s.n; 2008. 123 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-540664

ABSTRACT

Macrófagos são células do sistema imunológico que desempenham importante papel na defesa contra Leishmania. Neste trabalho, foram investigados alguns fatores e mecanismos que podem estar envolvidos na determinação dos perfis de resposta de Macrófagos peritoneais de BALB/c infectados in vitro com L. amazonensis ou L. braziliensis. Observou-se que IFN-y não foi capaz de reduzir a infecção causada por ambas as espécies de Leishmania. A sinergia entre IFN-y e TNF-a leva a uma diminuição do percentual de infecção dos macrófagos por La e Lb no tempo de 72h. Tanto o pré-tratamento com IFN-y quanto com IFN-y e TNF-a não alterou a viabilidade de L. amazonensis isoladas de Macrófagos em relação ao grupo que não sofreu pré-tratamento. No entanto, L. braziliensis se mostrou susceptível a ação dessas citocinas, já que o pré-tratamento dos Macrófagos com IFN-y foi capaz de diminuir o número de parasitos viáveis isolados. A sinergia entre IFN-y e TNF-a se mostrou bastante efetiva nesse grupo uma vez que o número de Lb isoladas a partir dos Macrófagos infectados mostrou-se bastante reduzido. Embora não tenha sido detectada produção de NO nos grupos de Macrófagos infectados com La e Lb, o bloqueio da produção dessa molécula, tanto in vitro quanto in vivo, é capaz de aumentar a infecção por Lb, mas não altera a infecção por La. A avaliação da produção de IL-12, revelou que Macrófagos infectados com Lb produzem maior quantidade dessa citocina e apresentam uma maior expressão de RNAm de TNF-a nas primeiras 6h após infecção que os infectados por La. Por outro lado, a infecção com La induz uma maior produção de TGF-J3, maior expressão de RNAm de IL-10 e menor expressão de RNAm de quimiocinas e receptores dessas moléculas em relação ao grupo infectado com Lb. A investigação da atividade de arginase de La e Lb demonstrou que promastigotas de La apresentam uma elevada atividade de arginase, apresentando-se aproximadamente 50 a 100 vezes maior que nos promastigotas de Lb. Esses dados correlacionam-se com a maior carga parasitária e maior sobrevivência desse parasito no interior dos Macrófagos, enquanto que a menor atividade dessa enzima em Lb pode estar relacionada com a baixa carga parasitária, alta susceptibilidade aos mecanismos microbicidas dos Macrófagos e uma conseqüente diminuição na sobrevivência dessa espécie de Leishmania. Esses dados demonstram que La e Lb induzem perfis diferentes de resposta à infecção, tanto in vitro quanto in vivo, e sugerem que fatores produzidos pelo parasito, a exemplo de arginase, podem estar envolvidos no desenvolvimento desses perfis diferenciados de resposta.


Subject(s)
Animals , In Vitro Techniques , Leishmania braziliensis , Leishmania braziliensis/immunology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/parasitology , Gene Expression , Mice, Inbred BALB C
15.
Mem. Inst. Oswaldo Cruz ; 102(2): 215-220, Mar. 2007. graf
Article in English | LILACS | ID: lil-447561

ABSTRACT

Leishmaniasis, an endemic parasitosis that leads to chronic cutaneous, mucocutaneous or visceral lesions, is part of those diseases, which still requires improved control tools. Propolis has shown activities against different bacteria, fungi, and parasites. In this study we investigated the effect of four ethanolic extracts of typified propolis collected in different Brazilian states, on Leishmania amazonensis performing assays with promastigote forms, extracellular amastigotes, and on infected peritoneal macrophages. Ethanolic extracts of all propolis samples (BRG, BRPG, BRP-1, and BRV) were capable to reduce parasite load as monitored by the percentage of infected macrophages and the number of intracellular parasites. BRV sample called red propolis, collected in the state of Alagoas, and containing high concentration of prenylated and benzophenones compounds, was the most active extract against L. amazonensis. The anti-Leishmania effect of BRV sample was increased in a concentration and time dependent manner. BRV treatment proved to be non-toxic to macrophage cultures. Since BRV extract at the concentration of 25 æg/ml reduced the parasite load of macrophages while presented no direct toxic to promastigotes and extracellular amastigotes, it was suggested that constituents of propolis intensify the mechanism of macrophage activation leading to killing of L. amazonensis. Our results demonstrate, for the first time, that ethanolic extracts of Brazilian propolis reduce L. amazonensis infection in macrophages, and encourage further studies of this natural compound in animal models of leishmaniasis.


Subject(s)
Animals , Mice , Antiprotozoal Agents/pharmacology , Leishmania mexicana/drug effects , Propolis/pharmacology , Brazil , Cells, Cultured , Mice, Inbred BALB C , Macrophages, Peritoneal/parasitology , Parasitic Sensitivity Tests , Time Factors
16.
The Korean Journal of Parasitology ; : 67-75, 2001.
Article in English | WPRIM | ID: wpr-67265

ABSTRACT

This experiment was focused on the characterization of anti-Toxoplasma monoclonal antibodies (mAbs) and the effect of mAbs on the parasite invasion of mouse peritoneal macrophages. Twenty eight mAbs including M110, M556, R7A6 and M621 were characterized by Ab titer, immunoglobulin isotyping and western blot pattern. Antibody titer (optical density) of 4 mAbs, M110, M556, R7A6 and M621, were 0.53, 0.67, 0.45 and 0.39 (normal mouse serum; 0.19) with the same IgG1 isotypes shown by Enzyme-linked immunosorbent assay (ELISA). Western blot analysis showed that M110, M556, R7A6 and M621 reacted with the 33 kDa (p30), 31 kDa (p28), 43 kDa and 36 kDa protein. Immunogold labelling of mAbs M110, M556, R7A6 and M621 reacted with the surface membrane, dense granules and parasitophorous vacuolar membrane (PVM), rhoptries and cytoplasm of tachyzoite, respectively. For in vitro assay, preincubation of tachyzoites with four mAbs, M110, M556, R7A6 and M621 resulted in the decrease of the number of infected macrophages (P < 0.05) and the suppression of parasite multiplication at 18 h post-infection. Four monoclonal antibodies including M110 (SAG1) were found to have an important role in the inhibition of macrophage invasion and T. gondii multiplication in vitro, and these mAbs may be suitable for vaccine candidates, diagnostic kit and for chemotherapy.


Subject(s)
Animals , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Protozoan/pharmacology , Antigens, Protozoan/analysis , Cells, Cultured , Depression, Chemical , Macrophages, Peritoneal/parasitology , Mice, Inbred ICR , Toxoplasma/growth & development
17.
Mem. Inst. Oswaldo Cruz ; 94(5): 645-8, Sept. 1999. ilus
Article in English | LILACS | ID: lil-241325

ABSTRACT

A study was carried out using macrophages cultured from the peritoneal exudate of dogs infected in vitro with three species of Leishmania: L. (L.) chagasi, L. (Viannia) braziliensis and L. (L.) amazonensis with the aim of investigating the growth kinetics and infectivity of these species in the host cell. Results were expressed as the percentage of macrophages infected measured at 24 hr intervals over six days in RPMI - 1640 culture medium at a temperature of 34-35oC. The findings open the possibility of using canine peritoneal cells as a model for the screenning of leishmanicide drugs and to study the pathogenesis of these species.


Subject(s)
Animals , Dogs , Male , Female , In Vitro Techniques , Leishmania/pathogenicity , Macrophages, Peritoneal/parasitology , Leishmania braziliensis/pathogenicity , Leishmania infantum/pathogenicity , Leishmania mexicana/pathogenicity , Leishmaniasis, Cutaneous , Leishmaniasis, Mucocutaneous , Leishmaniasis, Visceral
18.
Parasitol. día ; 20(3/4): 79-85, jul.-dic. 1996. ilus, graf
Article in Spanish | LILACS | ID: lil-202464

ABSTRACT

Se evaluó la respuesta de macrófagos procedentes de la cavidad peritoneal de hamsters y ratones a la infección con promastigotos de Leishmania mexicana. También se determinó la curva proliferativa del parásito en cultivos de fagocitos que se obtuvieron en animales sin infección, infectados recientemente y con enfermedad. La multiplicación de Leishmania en los cultivos de animales sin infección previa fue bastante significativa, siendo más notable en macrófagos de los hamsters. En los macrófagos procedentes de animales infectados la proliferación del parásito fue prácticamente inhibida observándose además una mayor destrucción macrofágica


Subject(s)
Animals , Cricetinae , Mice , Cricetinae/parasitology , In Vitro Techniques , Leishmania mexicana/pathogenicity , Mice/parasitology , Culture Media , Leishmania mexicana/growth & development , Leishmania mexicana/isolation & purification , Macrophages, Peritoneal/parasitology
19.
Indian J Exp Biol ; 1995 Jun; 33(6): 437-9
Article in English | IMSEAR | ID: sea-59464

ABSTRACT

Attempts were made to infect mice and immunosuppressed rabbits with Ehrlichia bovis. While evidence of infection could be noticed in rabbits, their identity as E. bovis needs confirmation. Mice appeared to be infected and showed clear inclusions in both blood monocytes and peritoneal macrophages. While symptoms of disease were not observable in rabbits, alopecia, dullness and death were noticed among infected mice. It is concluded that mice are better laboratory models for E. bovis infection; also that infection in mice could be enhanced by immunosuppression.


Subject(s)
Animals , Animals, Laboratory , Cattle , Cattle Diseases , Ehrlichia/isolation & purification , Ehrlichiosis/physiopathology , Macrophages, Peritoneal/parasitology , Mice , Monocytes/parasitology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL